

Filtration for Semiconductor

www.csc-isp.com

Driven by improvement of precision membranes, our products are sold around the world, covering more than 40 countries and regions in Europe, Americas and Asia.

Among the materials, our Nanofiber has been tested and proven to reach advanced world standard by high end clients in Europe and America, which could compete with top materials abroad.

66

We provide innovative solutions to help customers to improve product quality.

99

KLEANPLUS is National High-tech Enterprise Focusing on R&D, manufacturing and marking high polymer microporous membrane products and systems.

Our products cover high flow cartridge filter, pleated membrane filters, capsule filters, rolled depth filters, lenticular filter modules and filter membranes. KLEAN-PLUS is one of the manufacturers with the most abundant product lines in the world with more than 72 types of 1000 products.

Laboratory

Bubble point tester Turbidity tester Air permeability tester Scanning Electron Microscope(SEM) Flow rate/DP tester Inline particle tester Membrane pore size analyzer

Contents

- 03 Wet Etch, Bulk Chemical Manufacturing and Cleaning
- 16 CMP Slurry Filtration
- 19 Photoresist Filtration
- 26 Electroplating Solutions Filtration
- 30 Capsule Filter For ODF of LCD
- 31 18M Ultrapure Water Filter
- 33 Stainless Steel Gas Filters
- 34 Capsule Filters
- 40 Chemical Filter Housing
- 42 PFA Processing Services

We provide innovative solutions to help improve product quality.

Particles, gels and metals could cause different surface defect of products.

The high cost of late defects in eletronic equipments makes it necessary to control the contamination of particles, gels or metals. Filters is an importants line of defence to prevent wafer and substrate from contamination.

KLEANPLUS provides a wide range of solutions to meet your requirements of productivity and reliability.

F

Quality Control

ISO 9001:2015 certificated manufacturer & all products are made in 2000m² clean room.

Customized Service

KLEANPLUS provides rapid and professional technical services and customized products to help users solve problem.

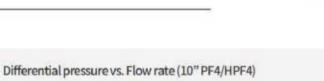
Cost Saving

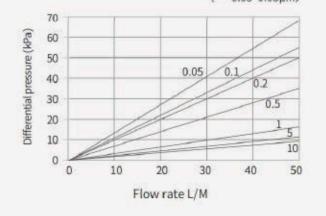
With our best quality products and professional services, KLEANPLUS could provide the most cost-saving filtration solutions.

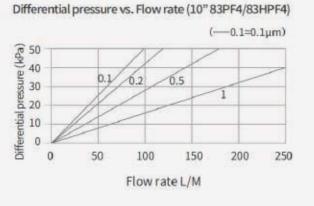
KLFAN 2LUS

Wet Etch, Bulk Chemical Manufacturing and Cleaning

PF4/HPF4(Φ56, Φ69, Φ83) series filter


PF4/HPF4(Φ56, Φ69, Φ83) series filter cartridges feature the best chemical compatibility and could be used in the most aggressive chemicals including strong acids, bases, corrosive liquid and oxidant. All fluorine construction and superior cleaning standard effectively reduces metal, chlorides and other contaminants. High flow rate, long service life.


Hydrophobic(PF4) and hydrophilic(HPF4) PTFE membranes are both available for liquid or gas applications.


Specifications


Filter Media	Hydrophobic PTFE/ Hydrophilic PTFE
Support	PFA
Endcaps/Cage/Core	PFA
Max. Working Temp	. 180°C
Membrane area	0.91m ² /10", 1.21m ² /10"
Max. Operating DP	Forward 0.42Mpa, Reverse 0.21Mpa

Ordering Information

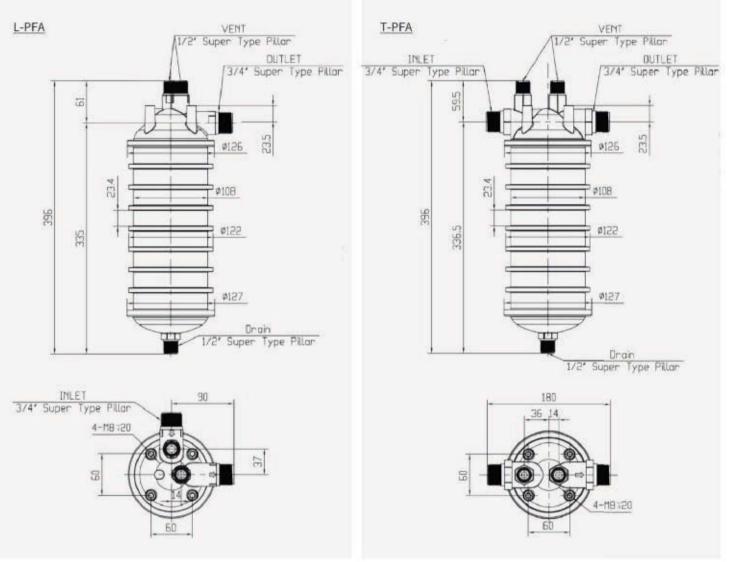
	Removal rating	Adaptor	Length	Sealing	Packaging
56PF4	002=0.02µm	2F=222Fin	02=2.5"	E=EPDM	/=Without Prewet
56HPF4*	003=0.03µm	2C=222Flat	05=5"	V=Viton	W=<25ppb
PF4	005=0.05µm	6F=226Spear	10=10"	S=Silicone	CW=<10ppb
HPF4	010=0.10µm	6C=226Flat	20=20"	T=FEP/Viton	
	022=0.22µm	ST=1160-rings	30=30"		
83PF4	045=0.45µm	2C=222 Flat	08=8"	E=EPDM	/=Without Prewet
83HPF4	10T=10µm	2EC=222 Fat with lock	10=10"	T=FEP/Viton	W=<25ppb CW=<10ppb

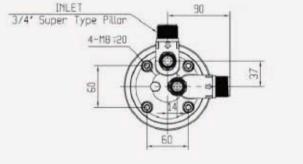
* 56PF4 series is only available in 5 inch with 116 o-rings.

KLFAN 2LUS

Wet Etch, Bulk Chemical Manufacturing & Cleaning

T-PFA & L-PFA disposable filters


T/L PFA filters are constructed of imported high purity PFA materials and PTFE membrane, designed for high-temperature and critical applications. Strict control of manufacturing process and cleanliness and all fluorine structure ensures T/F PFA filters feature the best chemical compatibility, ultra low metal extractables and longer life time.

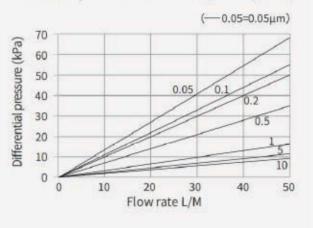

100% integrity tested to meet requirements of semiconductor. Prewet packaging reduces equipment pre-operation time. Disposable filter design features better leakproofness, conventient installation and changeout, reduce downtime and simplify system design.

Applications

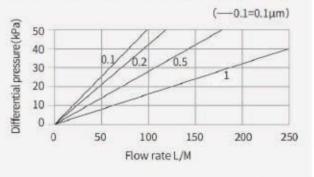
H2SO4, H3PO4, HNO3, HCL, NH4OH, H2O2, TMAH SC1,SC2,SPM, etc.

Filter media	PTFE					
Capsule	PFA					
Endcaps/Cage/Core	PFA					
Max. working temp.	180°C					
Max. working DP	0.42MPa/25°C					
Membrane area	S1	S2	E1 (83 PFA filter)	E2 (83 PFA filter)		
	0.7 m /10"	1.1 m² /10"	1.3 m² /10*	2.2 m² /10"		

TPFA	-	S1		002	(05	
Code		Filter Area	Remo	val Rating	Ler	rgth	
TPFA		S1	002	0.02µm	05	5"	S
LPFA		S2	005	0.05µm	10	10"	
		El	010	0.1µm	20	20"	
		E2	020	0.2µm			
			050	0.5µm			



PTFE membrane filter, PVDF Cage


HPF2(Φ69, Φ83) series filters provides excellent chemical compatibility, which could resist strong acids, bases, solvents and corrosive liquids

Hydrophobic(PF2) and hydrophilic (HPF2) PTFE membranes are both available for liquid or gas applications.

Differential pressure vs. Flow rate (10" PF2/HPF2)

Differential pressure vs. Flow rate (10" 83PF2/83HPF2)

Wet Etch, Bulk Chemical Manufacturing & Cleaning

PTFE membrane filter, HDPE Cage

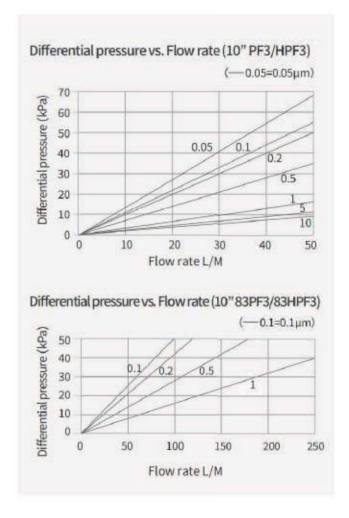
PF3/HPF3/UPE(Φ 69, Φ 83)series filters feature extremely low metal extractables. Suitable for benzene, toluene organic solvents, corrosive liquids and wet process chemicals.

Hydrophobic(PF3) and hydrophilic (HPF3) PTFE membranes are both available for liquid or gas applications.

Specifications

Filter Media Hy	drophobic PTFE/UPE lydrophilic PTFE/UPE
Support	HDPE
Endcaps/Cage/Core	e HDPE
Max. Working Temp	о. 70°С
Max. Operating DP	Forward 0.42Mpa, Reverse 0.21Mpa

Ordering Information


	Removal rating	Adaptor	Length	Sealing	Packaging
PF3 HPF3 UPE	005=0.05μm 010=0.10μm 022=0.22μm 045=0.45μm 10T=10μm	0D=DOE 2F=222Spear 2C=222Flat 6F=226Spear 6C=226Flat	05=5" 10=10" 20=20" 30=30" 40=40"	E=EPDM V=Viton S=Silicone T=FEP/Viton	/= Without prewet W=Prewet filter
83PF3 83HPF3 83UPE		2C=222Flat 6C=226Flat	08=8" 10=10"	E=EPDM T=FEP/Viton	/= Without prewet W=Prewet filter

Specifications

Filter Media	Hydrophobic PTFE/ Hydrophilic PTFE
Support	ECTFE
Endcaps/Cage/Core	PVDF
Max. Working Temp.	120°C
Max. Operating DP	Forward 0.42Mpa, Reverse 0.21Mpa

	Removal rating	Adaptor	Length	Sealing	Packaging
PF2	005=0.05µm	0D=DOE	05=5"	E=EPDM	/= Without
HPF2	010=0.10µm	2F=222Spear	10=10°	V=Viton	prewet
	022=0.22µm	2C=222Flat	20=20"	S=Silicone	W=Prewet filter
	045=0.45µm	6F=226Spear	30=30"	T=FEP/Viton	
	10T=10µm	6C=226Flat	40=40"		
83PF2		2C=222Flat	08=8"	E=EPDM	/= Without
83HPF2		6C=226Flat	10=10"	T=FEP/Viton	prewet
		10.00 CH 10.00	STATE OF T		W=Prewet

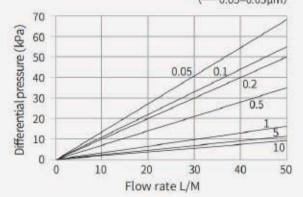
2	-	
₹.		
0		
51		
10		
10		
10		1
20		
20		
20		
10		
10		
10		
10		
50		
5		-
25		and a second
21		100
10		
0		-
		-
		1

	=	_	
-		-	
		-	
		-	
		-	
-		-	
			-
		-	
	-		-
			-
			-
		-	
		Concession of the local division of the loca	
			-
			100 C
			100
			1000
			-
			1

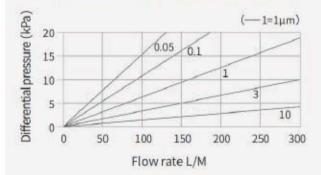
PTFE Membrane Filter

PF1/HPF1(Φ 69, Φ 83, Φ 131)series filter cartridges have stable porosity. 100% integrity tested.

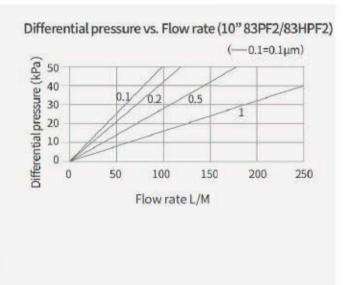

Hydrophobic(PF1) and hydrophilic (HPF1) PTFE membranes are both available for liquid or gas applications. PF1 series feature high flow rate, low pressure drop, wide chemical compatibility, long service life and high temperature resistance.


HPF1 series hydrophilic PTFE filter cartridge feature great hydrophility, low extractables and

high filtration efficiency. No prewetting requirement. Dry environment storage.


Specifications

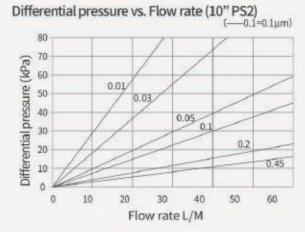
Filter Code	PF1/HPF1
Filter Media	Hydrophobic PTFE/ Hydrophilic PTFE
Support	PP
Endcaps/Cage/Core	PP
Max. Working Temp.	90°C
Max. Operating DP	Forward 0.42Mpa, Reverse 0.21Mpa



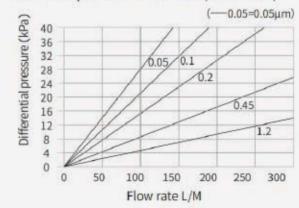
Differential pressure vs. Flow rate (10" 131PF2/131HPF2)

	Removal rating	Adaptor	Length	Sealing	Packaging
PF1	005=0.05µm	0D=DOE	05=5"	E=EPDM	/=Without
HPF1	010=0.10µm	2F=222Spear	10=10"	V=Viton S=Silicone T=FEP/Viton	W=Prewet filter
	022=0.22µm	2C=222Flat	20=20"		
	045=0.45µm	6F=226Spear	30=30"		
	10T=10µm	6C=226Flat	40=40"		
83PF1		2C=222Flat		E=EPDM	/=Without
83HPF1		6C=226Flat		T=FEP/Viton	prewet W=Prewet filter
131PF1 131HPF1		4C=334Flat	10=10"	E=EPDM T=FEP/Viton	/= Without prewet W=Prewet filter

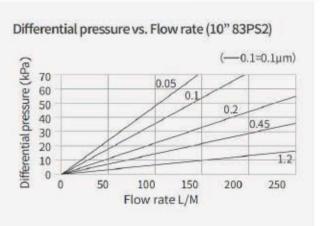



PES Membrane Filter

PS2(Φ69, Φ83, Φ131) series filters utilize asymmetric PES membrane, which feature graded interception, high dirt holding capacity and long service life. The unique structure of PS2 ensures lower replacement frequency and reduce total cost. Each filter is 100% integrity tested.


Specifications

Filter Code	PS2
Filter Media	Asymmetric PES
Support	PP
Endcaps/Cage/Core	PP
Max. Working Temp	. 90°C
Max. Operating DP	Forward 0.42Mpa, Reverse 0.21Mpa


Differential pressure vs. Flow rate (10" 131PS2)

Ordering Information

	Removal rating	Adaptor	Length
PS2	001=0.01µm	0D=DOE	05=5"
	003=0.03µm	2F=222Spear	10=10"
	005=0.05µm	2C=222Flat	20=20"
	010=0.1µm	6F=226Spear	30=30"
	022=0.22µm	6C=226Flat	40=40"
	045=0.45µm		
83PS2	100=1.00µm	2C=222Flat	08=8"
		6C=226Flat	10=10"
131PS2		4C=334Flat	10=10"

Sealing

E=EPDM

V=Viton

S=Silicone

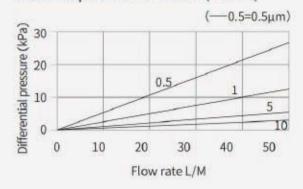
T=FEP/Viton

E=EPDM T=FEP/Viton

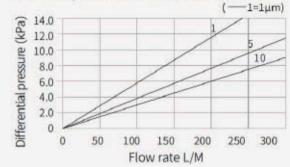
E=EPDM T=FEP/Viton

PP Pleated Filter Cartridges

PP3(Φ 69, Φ 83, Φ 131) Series pleated PP filter cartridges utilize multi-layer of graded PP membrane. The unique matrial structure ensures high dirt holding capacity and high filtration efficiency. Suitable for gels, colloids and high viscosity fluids.

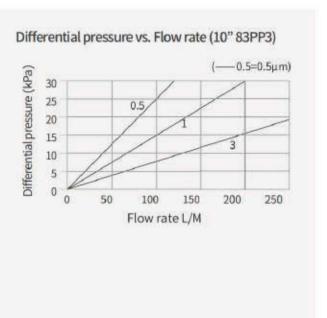

Filtration efficiency

Particle Size	0.5	1.0	1.5	2.0	5.0
0.5µm	98.86				
1.0µm	99.65	98.91			
3.0µm	100	99.98	99.96	98.60	
5.0µm	100	100	99.99	100	98.88


Specifications

Filter Code	PP3
Filter Media	Multi-layer PP
Support	PP
Endcaps/Cage/Core	PP
Max. Working Temp.	80°C
Max. Operating DP	Forward 0.42Mpa, Reverse 0.21Mpa

Differential pressure vs. Flow rate (10" PP3)


Differential pressure vs. Flow rate (10" 131 PP3)

Ordering Information

	Removal rating	Adaptor	Length
PP3	050=0.5µm	0D=DOE	05=5"
	100=1.0µm	2F=222Spear	10=10"
	150=1.5µm	2C=222Flat	20=20"
	200=2µm	6F=226Spear	30=30"
	300=3µm	6C=226Flat	40=40"
	500=5µm		
83PP3	10T=10µm	2C=222Flat	08=8"
		6C=226Flat	10=10"
131PP3		4C=334Flat	10=10"

Sealing

E=EPDM V=Viton S=Silicone T=FEP/Viton

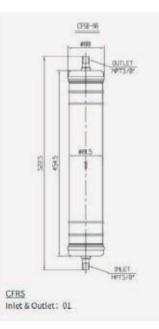
E=EPDM T=FEP/Viton

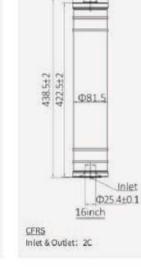
E=EPDM T=FEP/Viton

CFRS filter for removing metal ions

CFRS capsule filter effectively removes metal ions and ensures a stable output of ultrapure water.

Specifications


Filter Code	CFRS
Filter Media Ion Exchange R	
Capsule	
Length	438.5mm/236.3mm
Outer Diameter	81.5cm
Inlet & Outlet	222/226/WN
Max. Working Tem	p. 40°C
Max. Operating DP	0.6Mpa



Φ44±0.2 Outlet 222-Oring Φ85 236.34 218.84 Inlet Φ25.4±0.1 8inch-222

___Φ25.5±0.1

Outlet

Φ85

Ordering Information

CFRS -		08	 	2C		E
	Le	ngth	A	daptor		Sealing
	08	8*	2C	222 Flat	E	EPDM
	16	16"	6C	226 Flat	V	Viton
			01	3/8" NPT	S	Silicone
			02	1" clamp	т	FEP/Viton
			03	1/2" NPT		

CMP Slurry Filtration

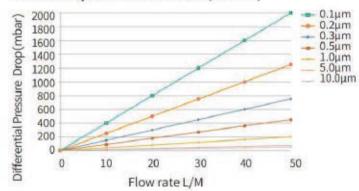
Filter media	Deefine Nanofiber
Core	PP
Max. working temp.	80°C/176°F
Max. working DP	0.4Mpa/25°C

V=Viton S=Silicone T=FEP/Viton

	Removal rating	Adaptor	Length
CMP-RF	010=0.1µm	0D=DOE	05=5"
	020=0.2µm	2F=222Spear	10=10"
	030=0.3µm	2C=222Flat	20=20"
	050=0.5µm	6F=226Spear	30=30"
	070=0.7µm	6C=226Flat	40=40"
	100=1.0µm		
	300=3.0µm		
	500=5.0µm		
	10T=10µm		
	20T=20µm		
	50T=50µm		

16

CMP Slurry Filtration

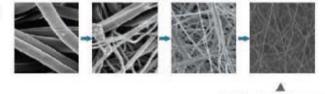

CMP-PP Pleated Filter Cartridge

The CMP-PP series ultilize multi-layer imported PP membranes as filter media. The advanced folding technology guarantees the dirt holding capacity, and all-polypropylene structure ensures the stable performance, which is an ideal choice for polishing solution filtration.

Specifications

Filter media	multi-layer imported PP
Support	PP
Endcaps/Cage/Core	PP
Max. working temp.	80°C/176°F
Max. working DP	0.4Mpa/25°C; 0.2Mpa/80°C

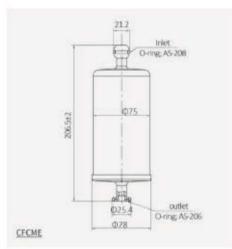
Differential pressure vs. Flow rate (CMP-PP)



Ordering Information

	Removal rating	Adaptor	Length	
CMP-PP	010=0.1µm	0D=DOE	05=5"	1
	020=0.2µm	2F=222Spear	10=10"	E=EPDM
	030=0.3µm	2C=222Flat	20=20"	V=Viton
	050=0.5µm	6F=226Spear	30=30"	S=Silicone
	100=1.0µm	6C=226Flat	40=40*	T=FEP/Vitor
	500=5.0µm			
	10T=10µm			

Deefine Nanofiber material


CMP Slurry Filtration

CFCME & CFCMP Capsule Filter

The CFCME/CFCMP series is designed for CMP applications with compact structure and easy operation. It has an excellent filtering effect on impurities and gels in the CMP slurry. All polypropylene structure, hot-melt welding, no adhesive.

Specifications

Filter Media	PP
Capsule	PP
Length	206mm
Max. Working Temp.	55°C
Max. Operating DP	0.6Mpa

Ordering Information

CFCM	E	-	PP	-	1	010	Ľ	1			V
	Capsule	1	Filter Media		Remov	al Rating	Inte	t & Outlet	Vent/Drain	5	Sealing
	E		PP		010	0.1µm	1	O-ring	/	E	EPDM
	Р		NF		020	0.2µm	2	3/8" Flare	1/4" Flare	V	Viton
	С				030	0.3µm					
					050	0.5µm					
					100	1µm					
					300	Зµm					
					500	5µm					

▲ CFCME

▲ CFCMC

Photoresist Filtration

N6/N66 series

N6/N66 series filter cartridges are made of nylon microporous membrane and processed by advanced fusion welding process. Each filter element has been integrity tested.

NN6/NN66 Series

NN6/NN66 series filter cartridge adopts nylon membrane as filter medium. The support, drainage, inner core, cage, endcaps are all made of nylon material. All nylon structure makes it more resistant to high temperature and solvents. Each filter element has been integrity tested.

Specifications

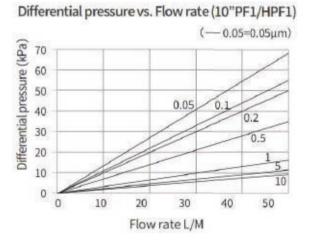
Filter Code	N6,N66	NN6,NN66
Filter Media	Nylon	Nylon
Support	PP	Nylon
Endcaps/Cage/Core	PP	Nylon
Max. Working Temp.	80°C	120°C
Max. Operating DP	Forward 0.42Mpa, Reverse 0.21Mpa	Forward 0.42Mpa, Reverse 0.21Mpa

Specifications

Filter Media	Hydrophobic PTFE/ Hydrophilic PTFE
Support	PP
Endcaps/Cage/Con	e PP
Max. Working Temp	90°C
Max. Operating DP	Forward 0.42Mpa, Reverse 0.21Mpa

Ordering Information

	Removal rating	Adaptor	Length	Sealing	Core
N6/N66	010=0.10µm	0D=DOE	05=5"	E=EPDM	1=PP
NN6/NN66	022=0.22µm	2F=222Spear	10=10"	V=Viton	2=Nylon
	045=0.45µm	2C=222Flat	20=20"	S=Silicone	
	065=0.65µm	6F=226Spear	30=30"	T=FEP/Viton	
	100=1.00µm	6C=226Flat	40=40*		


Photoresist Filtration

PF1/HPF1 Series

PF1/HPF1 series filter cartridge has uniform pore size and small diffusion flow. The hydrophobic and hydrophilic PTFE membrane can be used for both gas and liquid filtration.

Hydrophobic PF1 filter cartridges are characterized by inherent hydrophobicity, high flow rate, high filtration accuracy, no fiber shedding, chemical resistance, high temperature resistance and long service life.

Hydrophilic HPF1 filter cartridges are characterized by strong hydrophilicity, high flow rate, high filtration accuracy, no fiber shedding, chemical resistance, high temperature resistance, no need for pre-wetting, dry storage.

Removal rating	Adaptor	Length	Sealing	Packaging
05=0.05µm	0D=DOE	05=5"	E≈EPDM	/= Without
10=0.10µm	2F=222Spear	10=10"	V=Viton	prewet W=Prewet
22=0.22μm 45=0.45μm	2C=222Flat	20=20"	S≂Silicone	filter
45-0.45μm 0T=10μm	6F=226Spear	30=30"	T≈FEP/Viton	
	6C=226Flat	40=40"		20-

Photoresist Filtration

PF3/HPF3 Series


PF3/HPF3 series filter cartridges are ideal for organic solvents (benzene, dimethylbenzene), corrosive fluids and wet process chemicals, with extremely low extractable.

Flexibility to choose hydrophobic(PF3) or hydrophilic (HPF3) membrane to suit different applications.

Specifications

Filter Media	Hydrophobic PTFE/UPE Hydrophilic PTFE/UPE
Support	HDPE
Endcaps/Cage/Core	HDPE
Max. Working Temp.	70°C
Max. Operating DP	Forward 0.42Mpa, Reverse 0.21Mpa

Differential pressure vs. Flow rate (10" PF3/HPF3)

Flow rate L/M

Ordering Information

	Removal rating	Adaptor	Length	Sealing	Packaging
PF3	005=0.05µm	0D=DOE	05=5"	E=EPDM	/=Without
HPF3	010=0.10µm	2F=222Spear	10=10"	V=Viton	prewet
UPE	022=0.22µm	2C=222Flat	20=20"	S=Silicone	W=Prewet filter
	045=0.45µm	6F=226Spear	30=30"	T=FEP/Viton	
	10T=10µm	6C=226Flat	40=40"		

Specifications

Filter Code	Filter Media	Endcaps/Cage/ Support/Core	Max. Working Temp.	Max. Operating DP
GF	Glass microfiber	PP	80°C	Forward 0.42Mpa, Reverse 0.21Mpa
GP	Glass microfiber + PP	PP	80°C	Forward 0.42Mpa, Reverse 0.21Mpa
GN	Glass microfiber + nano fiber	PP	80°C	Forward 0.42Mpa, Reverse 0.21Mpa

Ordering Information

		Length	Sealing
030=0.3µm	0D=DOE	05=5"	E=EPDM
050=0.5µm	2F=222Spear	10=10"	V=Viton
100=1µm		20-20"	S=Silicone
200=2µm	20-222100	20-20	5-Shicone
300=3µm	6F=226Spear	30=30"	T=FEP/Vitor
500=5µm	6C=226Flat	40=40"	
10T=10µm			
	050=0.5μm 100=1μm 200=2μm 300=3μm 500=5μm	050=0.5µm 2F=222 Spear 100=1µm 2C=222 Flat 200=2µm 6F=226 Spear 500=5µm 6C=226 Flat	050=0.5μm 2F=222Spear 10=10" 100=1μm 2C=222Flat 20=20" 200=2μm 6F=226Spear 30=30" 300=3μm 6C=226Flat 40=40"

Photoresist Filtration

GF Series

GF series use glass microfiber as filter medium, which features high absorption and high efficiency.

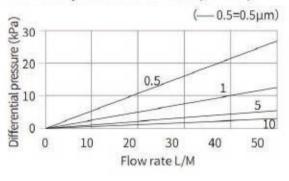
GP Series

GP filter is designed with glass microfiber medium and PP melt-blown membrane. The multi-layer gradient membrane structure has high dirt loading capacity, especially suitable for gels, condensed blocks and other impurities.

GN Series

GN series combine glass microfiber medium and nano fiber medium, which feature high dirt holding capacity. With homogeneous pore size, GN filter could intercept impurities and protect the useful particles to flow through. No fiber shedding during using. Each piece has been 100% integrity tested.

Specifications


Filter Code		PP3/PP3N
Filter Media	multi-	multi-layer PP/ layer PP+Nano fiber
Support		PP
Endcaps/Cag	e/Core	PP
Max. Working	Temp.	80°C
Max. Operating DP		Forward 0.42Mpa, Reverse 0.21Mpa

Photoresist Filtration

PP3/PP3N/PP3H Series

Continuously graded pore structure and multi-layer filter media. High contaminant loading capacity and long service life. Specially designed for suspended particulate, colloids and high viscosity fluids.

Filtration efficiency

Pore Size Size	0.5	1.0	1.5	2.0	5.0
0.5µm	98.86				
1.0µm	99.65	98.91			
3.0µm	100	99.98	99.96	98.60	
5.0µm	100	100	99.99	100	98.88

Ordering Information

	Removal rating	Adaptor	Length	Sealing
PP3	050=0.5µm	0D=DOE	05=5"	E=EPDM
	100=1.0µm	2F=222Spear	10=10"	V=Viton
	150=1.5µm	2C=222Flat	20=20"	S=Silicone
	200=2µm	6F=226Spear	30=30"	T=FEP/Viton
	300=3µm	6C=226Flat	40=40"	
	500=5µm			
	10T=10µm			

Photoresist Filtration

Three-hole Lithography Capsule filter

The CFTH series is specially suitable for flat panel and lithography applications.

The CFTH series provide critical particle removal performance for pigment-dispersed color resists. The built-in filter structure can minimize pollution.

The compact and stable design makes it easy to install or modify existing tools. It can be replaced in less than one minute, without any tools or draining, minimizing dripping and leakage.

Specifications

Filter Media	PTFE/PP
Support	PP, HDPE
Sealing	FEP/Viton, EPDM
Capsule	HDPE
Max. Working Temp.	0.39Mpa(25°C)
Max. Operating DP	0.27Mpa(25°C)
	40°C

Ordering Information

CFTH 02 - PT	FE
Code Length Filter	Media
CFTHE 02 2.5" P1	FE
CFTHP 05 5" P	P3

	010				
	Remo	val Ratin			
1	005	0.05µm			
	010	0.1µm			
	022	0.22µm			
	045	0.45µm			
	060	0.6µm			
	120	1.2µm			
	500	5µm			
	100.002				

	let & Outlet	Vent
442	12.7mm	6.35mm
332	9.53mm	6.35mm
222	6.35mm	6.35mm
884	8mm	4mm
664	6mm	4mm

24

Specifications

Filter Media	PP/PTFE/NF
Capsule	PP/PVDF
Max. Working Temp.	40°C
Max. Operating DP	0.4Mpa(25°C)

Ordering Information

CFPR			-		PP	-	()10		1	
	Ca	psule			Filter Media	Ľ	Remov	val Rating	1	nlet & Outlet	Vent
	1	PP	LΠ	Р	PP		005	0.05µm	1	8mm Swagelok	1/8" Swagelok
	v	PVDF		F	PTFE		010	0.1µm	2	1/4" Swagelok	1/8" Swagelok
				N	NF (FVDF capsule only)		050	0.5µm			
					TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		100	1µm			

Photoresist Filtration

CFPR Capsule filter

Ø34

¢25

¢22

H H

620

OUTLET

SV1/8

INLET SV-8M

The CFPR series is a disposable capsule filter designed for photoresist processing. It is designed to remove particles generated during the use of photoresist and improve product yield.

It has a compact space structure, which reduces the residual material and liquid, and the integral design makes the replacement safer and faster.

Manufacturing, testing and packaging in a clean room to ensure product cleanliness. Suitable for filtering in small flow occasions. There are a variety of materials to choose to meet a variety of needs.

Ø25

\$5\$

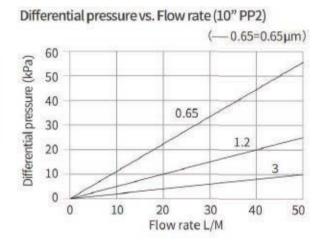
Ø20

INLET SW-1/4

Specifications

Filter Media	Efficient PP
Support	PP
Endcaps/Cage/Core	PP
Max. Working Temp.	80°C
Max. Operating DP	Forward 0.42Mpa, Reverse 0.21Mpa

Ordering Information


	Removal rat	ing	Adaptor	Length	Sealing
PP2	030=0.3µm	120=1.2µm	0D=DOE	05=5"	E=EPDM
	050=0.5µm	300=3µm	2F=222Spear	10=10"	V=Viton
	065=0.65µm	500=5µm	2C=222Flat	20=20"	S=Silicone
	100=1.0µm	10T=10µm	6F=226Spear	30=30"	T=FEP/Viton
			6C=226Flat	40=40"	

Electroplate liquid

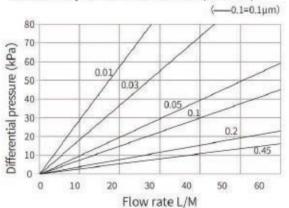
PP2 Series

Absolute rated filtration efficiency, gradient membrane structure and large surface area provide excellent dirt holding capacity. The characteristics of high flow rate and high precision make PP2 especially suitable for occasions that require high filtration performance.

Filtration efficiency

Pore Size	0.5	1.0	3.0	5.0
0.5µm	99.64	95.68	85.56	76.45
1.0µm	99.98	99.75	90.40	84.15
3.0µm	100	99.98	99.80	93,45
5.0µm	100	100	99.92	99.15
10µm	100	100	100	99.99

Electroplate liquid


PS2 Series

PS2 series are asymmetric PES membrane filters with gradient interception structure. The structure ensures high dirt loading capacity, high flux and long service life. Each filter has been 100% integrity tested before leaving the factory.

Specifications

Filter Media	Asymmetric PES
Support	PP
Endcaps/Cage/Core	PP
Max. Working Temp.	90°C
Max. Operating DP	Forward 0.42Mpa, Reverse 0.21Mpa

Differential pressure vs. Flow rate (10" PS2)

Ordering Information

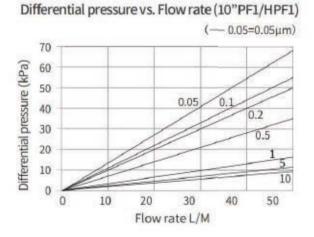
	Removal rating	Adaptor	Length	Sealing
PS2	001=0.01µm	0D=DOE	05=5"	E=EPDM
	003=0.03µm	2F=222Spear	10=10"	V=Viton
	005=0.05µm	2C=222Flat	20=20"	S=Silicone
	010=0.1µm	6F=226Spear	30=30"	T=FEP/Viton
	022=0.22µm	6C=226Flat	40=40"	
	045=0.45µm			
	065=0.65µm			
	100=1.00µm			

Specifications

Filter Media	Hydrophobic PTFE/ Hydrophilic PTFE
Support	PP
Endcaps/Cage/Core	PP
Max. Working Temp.	90°C
Max. Operating DP	Forward 0.42Mpa, Reverse 0.21Mpa

Ordering Information

	R
PF1	0
HPF1	0
	0
	0
	1
	-


Electroplate liquid

PF1/HPF1 Series

PF1/HPF1 series filter cartridge has uniform pore size and small diffusion flow. The hydrophobic and hydrophilic PTFE membrane can be used for both gas and liquid filtration.

Hydrophobic PF1 filter cartridges are characterized by inherent hydrophobicity, high flow rate, high filtration accuracy, no fiber shedding, chemical resistance, high temperature resistance and long service life.

Hydrophilic HPF1 filter cartridges are characterized by strong hydrophilicity, high flow rate, high filtration accuracy, no fiber shedding, chemical resistance, high temperature resistance, no need for pre-wetting, dry storage.

Removal rating	Adaptor	Length	Sealing	Packaging
05=0.05µm	0D=DOE	05=5"	E≈EPDM	/= Without
10=0.10µm	2F=222Spear	10=10"	V=Viton	prewet
22=0.22µm	2C=222Flat	20=20"	S≈Silicone	W=Prewet filter
45=0.45µm	6F=226Spear	30=30"	T≈FEP/Viton	
0T=10µm	6C=226Flat	40=40"		

KLFAN2LUS

Electroplate liquid

MBC Depth Filter

MBC depth filter is constructed of several bi-component fibers, high temperature and high pressure resistance. MBCG adds a layer of glass fiber to achieve an absolute efficiency of 0.5µm.

MBCF adds a layer of hydrophilic PTFE to achieve an absolute efficiency of 0.1µm

Specifications

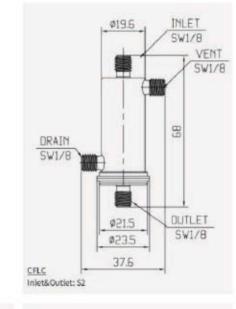
Filter Code	MBC	MBCG	MBCF
Filter Media	PP+PE	PP+PE+GF	PP+PE+PTFE
Max. Working Ter	np.	80°C	
Max. Operating	DP	0.48Mpa/25	5°C

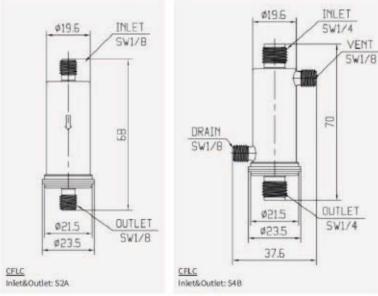
Ordering Information

	Removal rating	Adaptor	Length	Sealing
MBC	100=1.0µm	OD=DOE	05=5"	1
	300=3.0µm 500=5.0µm	2F=222Spear	10=10"	E=EPDM
	10T=10µm	2C=222Flat	20=20"	V=Viton
	25T=25μm 50T=50μm	6F=226Spear	30=30"	S=Silicone
	75T=75μm 10H=100μm 15H=150μm	6C=226Flat	40=40"	T=FEP/Viton
MBCG	050=0.5μm 100=1.0μm			
MBCF	010=0.1μm 020=0.2μm 045=0.45μm			

RFC Depth Filter

RFC series is made of carbon fiber filter material, suitable for solution decolorization, odor removal and chlorine removal occasions. The 69RFC series comes with housing and has an external diameter of 69 mm.


Specifications


Filter Code	RFC/69RFC
Filter Media	carbon fiber
Support	PP
Outer diameter	64/69mm
Max. Working Temp.	90°C

Ordering Information

	Removal rating			
RFC	500=5.0µm	0D=DOE	05=5"	1
		2F=222Spear	10=10"	E=EPDM
		2C=222Flat	20=20"	V=Viton
		6F=226Spear	30=30"	S=Silicone
		6C=226Flat	40=40"	T=FEP/Viton

CFLC	-	010			S2	
Code		Remo	val Rating		inlet & Outlet	Vent / Drain
CFLC	11	005	0.05µm	S2	1/8" Swagelok	1/8" Swagelok
CFLC2		010	0.1µm	S2A	1/8" Swagelok	/-No vent
		020	0.2µm	S4A	1/4" Swagelok	/-No vent
				S4B	1/4" Swagelok	1/8" Swagelok

ODF Capsule Filter

CFLC Series

The CFLC series is a disposable capsule filter designed to remove gelatinous substances and particles in liquid crystal materials. Suitable for the manufacture of thin film transistor displays. .

Perfluoropolymer makes it excellent chemical compatibility and low precipitation.

Manufacturing, testing and packaging in a clean room to ensure product cleanliness.

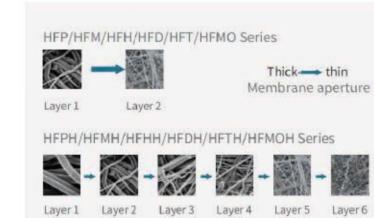
Specifications

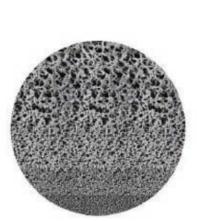
Filter Media	PTFE
Support, Cage, Core	PFA
Outer diameter	120°C
Max. Working Temp.	0.42Mpa

18M ultrapure water filter cartridge

HFP/ HFPH Series

FP/HFPH Series are high flow water filter cartridges with handle and inside to outside flow pattern. It has large 152 mm (6") diameter. The flow rate is up to 70m³/h per 40" cartridge.


HFM / HFMH Series


HFM/HFMH Series are high flow filter cartridges with single open-ended and outside to inside flow pattern. It has a large 165 mm (6.5") diameter. The flow rate is up to 80m³/h for one 40" cartridge.

HFH/ HFHH Series

HFH/HFHH Series are high flow filter cartridges with single open-ended and outside to inside flow pattern. It has a large diameter of 152 mm(6") . The flow rate is up to 70m³/h for one 40" cartridge.

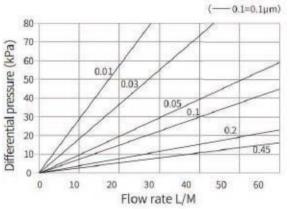
2.023.48

PS2

Ordering Information

Filter medium	PP/glass fiber
Max. operating temp.	80°C
Max. differential pressu	re 0.3MPa(60°C)

-31


18M ultrapure water filter cartridge

PS2 Series

PS2 series are asymmetric PES membrane filters with gradient interception structure. The structure ensures high dirt loading capacity, high flux and long service life. Each filter has been 100% integrity tested.

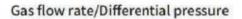
Specifications

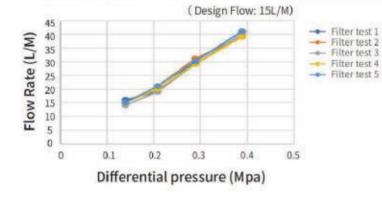
Filter Media	Asymmetric PES
Support	PP
Endcaps/Cage/Core	PP
Max. Working Temp.	90°C
Max. Operating DP	Forward 0.42Mpa, Reverse 0.21Mpa

Differential pressure vs. Flow rate (10" PS2)

Removal rating	Adaptor	Length	Sealing
001=0.01µm	OD=DOE	05=5"	E=EPDM
002=0.02µm	2F=222Spear	10=10"	V=Viton
005=0.05µm	2C=222Flat	20=20"	S=Silicone
010=0.1µm	6F=226Spear	30=30"	T=FEP/Viton
022=0.22µm	6C=226Flat	40=40"	
045=0.45µm			
065=0.65µm			
100=1.00µm			

KLFAN2LUS

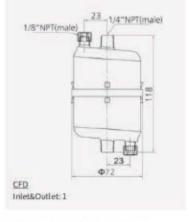

Stainless steel gas filter


GSSM and GSS series

The GSSM and GSS gas filter housing are made of electronic grade stainless steel and designed for gas filtration at high temperature and pressure in semiconductor processes. The filters feature high flow rates, low pressure drop and excellent chemical compatibility.

Specifications

Filter Media	Hydrophobic PTFE
Housing	316L stainless steel
Support	PFA
Max. Working Temp.	170°C
Max. Operating DP	Forward 0.55Mpa, Reverse 0.34Mpa


Applications

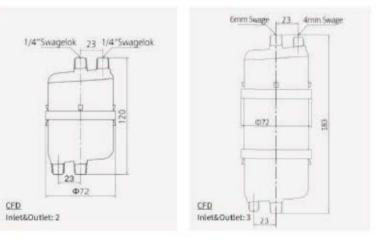
Compressed air, process gas, toxic gas, dry gas, dewatering

Ordering Information

GSSM			300	VMM4						
		Remo	oval Rating	Inlet & Outlet Let						
	1	300	0.003µm	VMM4	1/4" Gasket Steal(VCR).Male/Male	84mm				
		150	0.0015µm	SMM4	1/4" Compression Steal (Swagelok). Male inlet/outlet	73mm				
				VFM4	1/4" Gasket Steal (VCR). Female inlet/Male outlet	88mm				
				VMF4	1/4" Gasket Steal (VCR). Male inlet/Female outlet	100mm				
GSS]-[300		VMM4						
		Remo	wal Rating		Inlet & Outlet					
		300	0.003µm		1/4" Gasket Seal (VCR or Compatible) Male/Male	141mm				
		150	0.0015µm		3/8" Gasket Seal (VCR or Compatible) Male/Male	148mm				
					1/4" Gasket Seal (VCR or Compatible) Female/Male	148mm				
					1/4" Compression Seal (Swagelok or Compatible) Male/Male	141mm				
					3/8" Compression Seal (Swagelok or Compatible) Male/Male	147mm				
					1/2" Compression Seal (Swagelok or Compatible) Male/Male	111mm				
					1/4" Female NPT	132mm				

Ordering Information

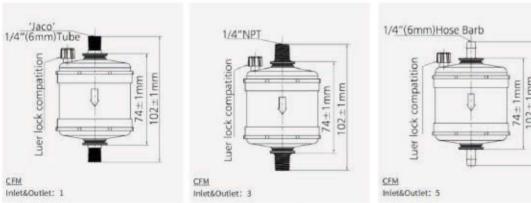
CFD	- NF	-	010	1					
Code	Filter Media	Remo	val Rating		Inlet & Outlet	Vent/Drain			
CFD	PP2	005	0.05µm	1	1/4" NPT	1/8" NPT			
CFD2	PP3	010	0.1µm	2	6mm Swagelok	4mm Swagelok			
	NF	022	0.22µm	3	1/4° Swagelok	1/4" Swagelok			
	PF1	045	0.45µm	F64	3/8" Flare	1/4" Flare			
	PS1	100	1µm	S64	3/8" Swagelok	1/4" Swagelok			
	-			S84	1/2" Swagelok	1/4" Swagelok			


e.g.: CFD Capsule Filter CFD-PP2-0101-2.5", PP2 filter media, 0.1µm, 1/4NPT, 1/8NPT

Capsule filter series

CFD Series

The CFD capsule filter is a perfect combination of filter element and housing for quick installation and direct use. It has a compact space structure, with little residue in the filter element when replaced, and is ideal for laboratory or small batch production lines. Depending on the filtration situation, the filter material has a variety of different materials to choose from. 2 length sizes are available, both with large calibre import and export connections, to minimize pressure loss.



Capsule filter series

CFM Series

The CFM series filters contain an anti-fiber shedding filter element to prevent secondary contamination. Proper membrane selection affects the performance characteristics of the filter, such as gel removal and service life.

Ordering Information

Capsule filter series

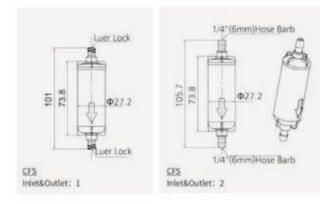
CFRK Series

The unique design of the CFRK series filters avoids direct human contact with the slurry and is particularly suitable for filtering harmful solvents such as corrosive and volatile. The CFRK filter reduces the gap between the filter housing and the filter element, reduces the residue of the fluid, saves material and minimizes customer costs.

Specifications

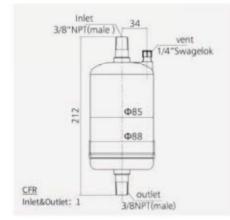
Filter Code	CFRK		
Filter Media HCB/PP3/	Glass Fiber etc		
Capsule	PP		
Length	5"/10"/20"		
Max. Working Temp.	80°C		
Max. Operating DP	0.8Mp		

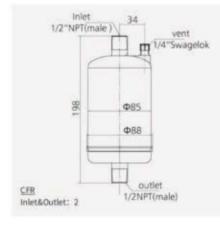
CFRK	-	HCB -	- 0	050			
	1	Filter Media	Remov	al Ratin			
		HCB	050	0.5µr			
		PP3	300	Зµп			
		GF	500	5µm			
		1112	25T	25µr			
			50T	50 µr			
			75T	75µr			
			10H	100µ			
默认密封图: EPDM	1						



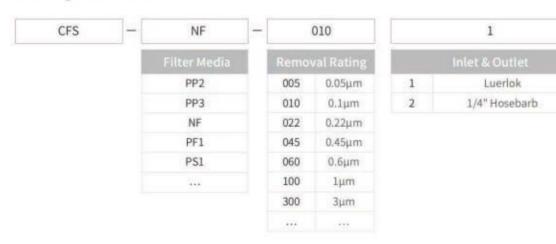
KLFAN:LUS

Capsule filter series

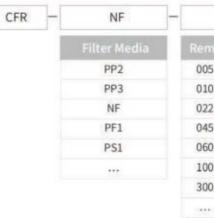



CFS Series

The CFS series is a compact capsule filter designed for fine filtration and low residual equipment, with a unique fast-loading structure for easy removal. The series features a high-area folding filter structure with a long service life and reduced initial pressure, making it ideal for small-dose filtration.


Specifications

Filter Code	CFS
Filter Media	PP/PES/PTFE,etc
Capsule	PP
Length	105.7mm/101mm
Max. Working Temp.	80°C
Max. Operating DP	0.6Mpa



Ordering Information

Ordering Information

Capsule filter series

CFR Series

CFR series are designed with 3/8 inch NPT and 1/2 inch NPT connections, ideal for big flow lab testing.

Specifications

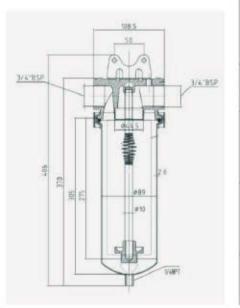
Filter Code	CFR
Filter Media	PP/PES/PTFE,etc.
Capsule	PP
Length	212mm/198mm
Max. Working Temp.	80°C
Max. Operating DP	0.6Mpa

1	010		1
nov	al Rating	1	nlet & Outlet
5	0.05µm	1	3/8" NPT
D	0.1µm	2	1/2" NPT
2	0.22µm		
5	0.45µm		
0	0.6µm		
0	1µm		
0	3µm		

Filter housing

HSSA liquid filter housing

HSSA industrial filter housing is designed for critical process filtration with single filter capacity.


Easy and fast installation.

Tri-clamp sealed housing ensures easy cartridge replacement.

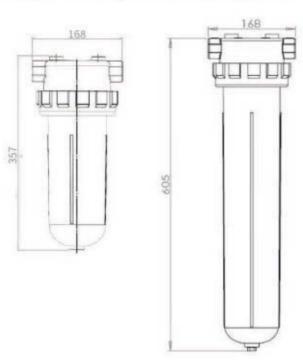
Fine surface polishing to meet wide range of filtration requirements. Applications include electronics, water treatment, chemical, food and beverage, pharmaceutical and so on.

Drain valve on the bottom of filter bowl for easy drainage.

Specifications

	Housing shell: 304 stainless steel or 316L					
Materials	Drain: 304 stainless steel or 316L					
	O-ring/Gaskets: EPDM/Viton/Silicone/PTFE					
Inlet & Outlet	1/2", 3/4", 1" Female NPT					
Drain	1/4" NPT					
	5", 10", 20", 30"					
Length	Diameter: 89mm					
	Clamp: D10×300					
	Filter head: Casting					
Surface Finish	Housing body: Mechanical polished					
	Surface option: Inner Ra: 0.4um/External Ra: 0.6um					
Operating conditions	Max. Operating pressure: 1Mpa 10bar					
	Max. operating temp: 130°C					

Ordering Information

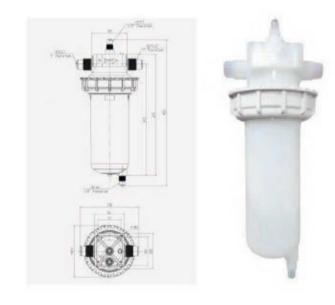

HSSA –	16 Material			G4	2C		10		V	
			laterial Inlet&Outlet		Cartridge filter end caps		Length		O-ring	
	04	304 Steel	G4	1/2" FNPT	0D	Double open	05	5"	Ε	EPDM
	16	316L Steel	G6	3/4" FNPT	2C	222Flat	10	10"	S	Silicone
			G8	1" FNPT	6C	226Flat (with adaptor)	20	20"	٧	Viton
						11 - 01 - 01	30	30"	F	PTFE

Chemical filters

PP filters

PP filtration is composed of pure polypropylene material, with low precipitation and good chemical compatibility features of . Suitable for general water cleaning or chemical filtration.

Compact design, simple and lightweight housing, easy to install, suitable for all generations of line equipment.


HPP		10		2C			
Code	Le	ngth	A	dapt	Inle	et	
HPP	10	10"	2C	222Flat	N6		
	20	20"			N8		
83HPP	10	10"	6C	226Flat		ι	
	20	20"				D	
131HPP	10	10"	4C	334Flat		ι	
						ι	

Chemical filters

PFA filters

Excellent space-saving solution. This housing locks the cartridge into the bowl, allowing the bowl and cartridge to be installed or removed as a single unit. Contamination and chemical contact are minimized. Ultra Clean Product and Manufacturing PFA Housing only utilizes the highest purity grade Dupont PFA-440 HPJ or equivalent PFA Resin.

Lock-in cartridge reduces required overall footprint and cartridge changeout space. Turning the bowl locking ring perfectly seats the cartridge in the head with double O-ring engagement and straight alignment every time. Provides virtually hands-free cartridge changeout for maximum safety and cleanliness, promoting a safer workplace.

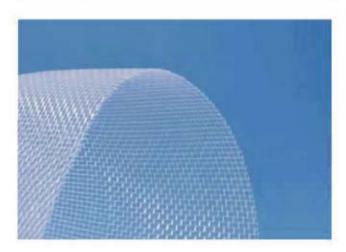
	Head, molded-on fitting, bowl	PFA 440 HPJ or equivalent		
2011-10-10-00-00-00-00-00-00-00-00-00-00-	O-ring	E-FKM or F-FKM		
Materials	Locking ring(nonwetted part)	PVDF or PP		
	Mounting hardware-nuts and bolts(nonwetted parts)	PF4(Φ70mm) 83PF4(Φ83 mm) Ezelock, Exx Chemlock or Pxx		
Operating	Max. differential pressure	0.3Mpa (100°C) ;0.75Mpa (25°C)		
conditions	Max. operating temp.	100°C		

Ordering Information

Specifications

HPFA -	1	0		2C			F844		Т		V		S
	Ler	gth	Cor	Filter		Inlet & Outlet	Vent	Drain	Sealing	Lo	ck Ring		Cleanliness
	04	4"	100.00	222 Flat	F844	1" Flare	1/2" Flare	1/2" Flare	T E-FKM	٧	PVDF	s	Semiconductor
	10	10"			F644	3/4" Flare	1/2" Flare	1/2" Flare	F F-FKM	D	PP	E	Flastuatio
					F824	1" Flare	1/4" Flare	1/2" Flare	1 1 3 1 1 19	-	EF.	1	grade
	20	20"			F624	3/4" Flare	1/4" Flare	1/2" Flare					
					F842	1" Flare	1/2" Flare	1/4" Flare					
					F642	3/4" Flare	1/2" Flare	1/4" Flare					
					F822	1" Flare	1/4" Flare	1/4" Flare					
					F622	3/4" Flare	1/4" Flare	1/4" Flare					
					S844	1" Super Pillar	1/2" Pillar Super 300	1/2" Pillar Super 300					
					S644	3/4" SuperPillar	1/2" Pillar Super 300	1/2" Pillar Super 300					

PFA OEM


DEEFINE offers professional PFA processing services such as weaving PFA mesh, silicon cleaning baskets, PFA TANK tanks, etc. Pure PFA materials have the best chemical compatibility, which could resist strong acids, alkali, organic solvents and other highly corrosive fluids, widely used in the semiconductor.

PFA filter mesh

Deefine PFA woven net utilize 100% PFA raw materials. Widely used as membrane support/drainage layers, PFA net could increase effective membrane area, ensure low flow resistance and optimize performance of all fluoropolymer cartridge filter.

Specifications

Code	402	604
Pore size	40 mesh	60 mesh
PFA line diameter	0.2mm	0.1mm
Thickness	0.4mm	0.2mm

PFA wafer cassette

Suitable for 4 inch and 6 inch wafers.

T-TYPE TANK

All-PFA storage tank can be used as a buffer device for chemicals.

We separate what you want

KLEANPLUS

CSC-ISP Co.

Tel: 886-7-5360506 Fax:886-7-5360510 Web: www.csc-isp.com